Small-sized and highly dispersed Pt nanoparticles loading on graphite nanoplatelets as an effective catalyst for methanol oxidation.
نویسندگان
چکیده
A series of high loading Pt nanoparticles (NPs) with a small particle size uniformly dispersed on graphite nanoplatelets (GNPs) have been synthesized in the presence of an imidazolium-based ionic liquid (Pt/I-IL (x)/GNPs). I-IL, an amphoteric ion used as an additive agent to stabilize Pt NPs, can also prevent the aggregation of the GNPs. The results obtained from X-ray diffraction, transmission electron microscopy and electrochemical testing showed that the I-IL assisted synthesis method resulted in size reduction of Pt NPs, an improvement of Pt dispersion on GNPs, and the identification of the relationships between the mean size of Pt NPs and the volume of I-IL. Among all as-prepared Pt/GNP catalysts with or without I-IL assisted, the sample with 10 microliters of I-IL assisted (Pt/I-IL (10)/GNPs) exhibits the highest electrocatalytic activity and the best stability toward the methanol oxidation reaction. Moreover, the Pt/I-IL (10)/GNP catalyst markedly outperforms the commercial Pt/C from Johnson Matthey in terms of both methanol oxidation activity and stability, revealed by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy.
منابع مشابه
Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation
The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...
متن کاملOne –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells
We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...
متن کاملElectrocatalytic properties of platinum catalyst for methanol electrooxidation enhanced by nafion-thionine ion-pair
Nafion (Nf)-thionine (Th) ion-pair as dispersant and second catalyst has been introduced in Pt catalyst for methanol electrooxidation and the resulting catalyst supported on carbon (NfThPt/C) has been investigated by electrochemical method. For the same loading mass of Pt, the peak current density of methanol oxidation on the NfThPt/C/graphite electrode is about 7.25 and 3.04 times as high as t...
متن کاملCerium-Promoted PtRu/MWNTs As the Anode Catalyst for Methanol Electro-Oxidation
In the present study, PtRuCe/MWNTs nanocatalysts synthesized via polyol process technique are applied as anode electro-catalyst in methanol electro-oxidation reaction (MOR). To characterize the nanocatalysts, TEM, XRD, EDS and XPS are investigated. Cyclic voltammetry and choronoamperometry are used to evaluate the electro-catalytic activ...
متن کاملSynthesis and characterization of Pt/graphene-CNTs electrocatalyst for direct methanol fuel cell
In the present work we report a facile method for the synthesis of Pt nanoparticles supported reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) nanocomposite by an in-situ chemical reduction. The incorporation of MWCNTs to rGO leads to decrease in agglomeration between rGO sheets due to π – π interactions and higher loading of Pt nanoparticles. In this process, a mixture o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 22 شماره
صفحات -
تاریخ انتشار 2015